Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
MMWR Morb Mortal Wkly Rep ; 72(16): 445-449, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2299205

ABSTRACT

At-home rapid antigen COVID-19 tests were first authorized by the Food and Drug Administration in late 2020 (1-3). In January 2022, the White House launched COVIDTests.gov, which made all U.S. households eligible to receive free-to-the-user at-home test kits distributed by the U.S. Postal Service (2). By May 2022, more than 70 million test kit packages had been shipped to households across the United States (2); however, how these kits were used, and which groups were using them, has not been reported. Data from a national probability survey of U.S. households (COVIDVu), collected during April-May 2022, were used to evaluate awareness about and use of these test kits (4). Most respondent households (93.8%) were aware of the program, and more than one half (59.9%) had ordered kits. Among persons who received testing for COVID-19 during the preceding 6 months, 38.3% used a COVIDTests.gov kit. Among kit users, 95.5% rated the experience as acceptable, and 23.6% reported being unlikely to have tested without the COVIDTests.gov program. Use of COVIDTests.gov kits was similar among racial and ethnic groups (42.1% non-Hispanic Black or African American [Black]; 41.5% Hispanic or Latino [Hispanic]; 34.8% non-Hispanic White [White]; and 53.7% non-Hispanic other races [other races]). Use of other home COVID-19 tests differed by race and ethnicity (11.8% Black, 44.4% Hispanic, 45.8% White, 43.8% other races). Compared with White persons, Black persons were 72% less likely to use other home test kits (adjusted relative risk [aRR] = 0.28; 95% CI = 0.16-0.50). Provision of tests through this well-publicized program likely improved use of COVID-19 home testing and health equity in the United States, particularly among Black persons. National programs to address availability and accessibility of critical health services in a pandemic response have substantial health value.


Subject(s)
COVID-19 , Adult , Humans , United States/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Sampling Studies , Ethnicity , White
2.
Clin Infect Dis ; 74(7): 1141-1150, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1700667

ABSTRACT

BACKGROUND: Reported coronavirus disease 2019 (COVID-19) cases underestimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We conducted a national probability survey of US households to estimate cumulative incidence adjusted for antibody waning. METHODS: From August-December 2020 a random sample of US addresses were mailed a survey and self-collected nasal swabs and dried blood spot cards. One adult household member completed the survey and mail specimens for viral detection and total (immunoglobulin [Ig] A, IgM, IgG) nucleocapsid antibody by a commercial, emergency use authorization-approved antigen capture assay. We estimated cumulative incidence of SARS-CoV-2 adjusted for waning antibodies and calculated reported fraction (RF) and infection fatality ratio (IFR). Differences in seropositivity among demographic, geographic, and clinical subgroups were explored. RESULTS: Among 39 500 sampled households, 4654 respondents provided responses. Cumulative incidence adjusted for waning was 11.9% (95% credible interval [CrI], 10.5%-13.5%) as of 30 October 2020. We estimated 30 332 842 (CrI, 26 703 753-34 335 338) total infections in the US adult population by 30 October 2020. RF was 22.3% and IFR was 0.85% among adults. Black non-Hispanics (Prevalence ratio (PR) 2.2) and Hispanics (PR, 3.1) were more likely than White non-Hispanics to be seropositive. CONCLUSIONS: One in 8 US adults had been infected with SARS-CoV-2 by October 2020; however, few had been accounted for in public health reporting. The COVID-19 pandemic is likely substantially underestimated by reported cases. Disparities in COVID-19 by race observed among reported cases cannot be attributed to differential diagnosis or reporting of infections in population subgroups.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/epidemiology , Humans , Immunoglobulin A , Incidence , Pandemics , United States/epidemiology
3.
J Infect Dis ; 225(3): 396-403, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1672203

ABSTRACT

BACKGROUND: Reported coronavirus disease 2019 (COVID-19) cases underestimate true severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Data on all infections, including asymptomatic infections, are needed. To minimize biases in estimates from reported cases and seroprevalence surveys, we conducted a household-based probability survey and estimated cumulative incidence of SARS-CoV-2 infections adjusted for antibody waning. METHODS: From August to December 2020, we mailed specimen collection kits (nasal swabs and blood spots) to a random sample of Georgia addresses. One household adult completed a survey and returned specimens for virus and antibody testing. We estimated cumulative incidence of SARS-CoV-2 infections adjusted for waning antibodies, reported fraction, and infection fatality ratio (IFR). Differences in seropositivity among demographic, geographic, and clinical subgroups were explored with weighted prevalence ratios (PR). RESULTS: Among 1370 participants, adjusted cumulative incidence of SARS-CoV-2 was 16.1% (95% credible interval [CrI], 13.5%-19.2%) as of 16 November 2020. The reported fraction was 26.6% and IFR was 0.78%. Non-Hispanic black (PR, 2.03; 95% confidence interval [CI], 1.0-4.1) and Hispanic adults (PR, 1.98; 95% CI, .74-5.31) were more likely than non-Hispanic white adults to be seropositive. CONCLUSIONS: As of mid-November 2020, 1 in 6 adults in Georgia had been infected with SARS-CoV-2. The COVID-19 epidemic in Georgia is likely substantially underestimated by reported cases.


Subject(s)
COVID-19 , Adult , Antibodies, Viral/blood , COVID-19/epidemiology , Georgia/epidemiology , Humans , Incidence , Seroepidemiologic Studies
4.
Open Forum Infect Dis ; 8(8): ofab379, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1526178

ABSTRACT

BACKGROUND: California has reported the largest number of coronavirus disease 2019 (COVID-19) cases of any US state, with more than 3.5 million confirmed as of March 2021. However, the full breadth of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in California is unknown as reported cases only represent a fraction of all infections. METHODS: We conducted a population-based serosurvey, utilizing mailed, home-based SARS-CoV-2 antibody testing along with a demographic and behavioral survey. We weighted data from a random sample to represent the adult California population and estimated period seroprevalence overall and by participant characteristics. Seroprevalence estimates were adjusted for waning antibodies to produce statewide estimates of cumulative incidence, the infection fatality ratio (IFR), and the reported fraction. RESULTS: California's SARS-CoV-2 weighted seroprevalence during August-December 2020 was 4.6% (95% CI, 2.8%-7.4%). Estimated cumulative incidence as of November 2, 2020, was 8.7% (95% CrI, 6.4%-11.5%), indicating that 2 660 441 adults (95% CrI, 1 959 218-3 532 380) had been infected. The estimated IFR was 0.8% (95% CrI, 0.6%-1.0%), and the estimated percentage of infections reported to the California Department of Public Health was 31%. Disparately high risk for infection was observed among persons of Hispanic/Latinx ethnicity and people with no health insurance and who reported working outside the home. CONCLUSIONS: We present the first statewide SARS-CoV-2 cumulative incidence estimate among adults in California. As of November 2020, ~1 in 3 SARS-CoV-2 infections in California adults had been identified by public health surveillance. When accounting for unreported SARS-CoV-2 infections, disparities by race/ethnicity seen in case-based surveillance persist.

6.
Ann Epidemiol ; 49: 50-60, 2020 09.
Article in English | MEDLINE | ID: covidwho-703961

ABSTRACT

PURPOSE: The U.S. response to the SARS-CoV-2 epidemic has been hampered by early and ongoing delays in testing for infection; without data on where infections were occurring and the magnitude of the epidemic, early public health responses were not data-driven. Understanding the prevalence of SARS-CoV-2 infections and immune response is critical to developing and implementing effective public health responses. Most serological surveys have been limited to localities that opted to conduct them and/or were based on convenience samples. Moreover, results of antibody testing might be subject to high false positive rates in the setting of low prevalence of immune response and imperfect test specificity. METHODS: We will conduct a national serosurvey for SARS-CoV-2 PCR positivity and immune experience. A probability sample of U.S. addresses will be mailed invitations and kits for the self-collection of anterior nares swab and finger prick dried blood spot specimens. Within each sampled household, one adult 18 years or older will be randomly selected and asked to complete a questionnaire and to collect and return biological specimens to a central laboratory. Nasal swab specimens will be tested for SARS-CoV-2 RNA by RNA PCR; dried blood spot specimens will be tested for antibodies to SARS-CoV-2 (i.e., immune experience) by enzyme-linked immunoassays. Positive screening tests for antibodies will be confirmed by a second antibody test with different antigenic basis to improve predictive value of positive (PPV) antibody test results. All persons returning specimens in the baseline phase will be enrolled into a follow-up cohort and mailed additional specimen collection kits 3 months after baseline. A subset of 10% of selected households will be invited to participate in full household testing, with tests offered for all household members aged ≥3 years. The main study outcomes will be period prevalence of infection with SARS-CoV-2 and immune experience, and incidence of SARS-CoV-2 infection and antibody responses. RESULTS: Power calculations indicate that a national sample of 4000 households will facilitate estimation of national SARS-CoV-2 infection and antibody prevalence with acceptably narrow 95% confidence intervals across several possible scenarios of prevalence levels. Oversampling in up to seven populous states will allow for prevalence estimation among subpopulations. Our 2-stage algorithm for antibody testing produces acceptable PPV at prevalence levels ≥1.0%. Including oversamples in states, we expect to receive data from as many as 9156 participants in 7495 U.S. households. CONCLUSIONS: In addition to providing robust estimates of prevalence of SARS-CoV-2 infection and immune experience, we anticipate this study will establish a replicable methodology for home-based SARS-CoV-2 testing surveys, address concerns about selection bias, and improve positive predictive value of serology results. Prevalence estimates of SARS-CoV-2 infection and immune experience produced by this study will greatly improve our understanding of the spectrum of COVID-19 disease, its current penetration in various demographic, geographic, and occupational groups, and inform the range of symptoms associated with infection. These data will inform resource needs for control of the ongoing epidemic and facilitate data-driven decisions for epidemic mitigation strategies.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus/genetics , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Trial Protocols as Topic , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL